Brunet-Derrida behavior of branching-selection particle systems on the line

نویسندگان

  • Jean Bérard
  • Jean-Baptiste Gouéré
چکیده

We consider a class of branching-selection particle systems on R similar to the one considered by E. Brunet and B. Derrida in their 1997 paper ”Shift in the velocity of a front due to a cutoff”. Based on numerical simulations and heuristic arguments, Brunet and Derrida showed that, as the population size N of the particle system goes to infinity, the asymptotic velocity of the system converges to a limiting value at the unexpectedly slow rate (logN). In this paper, we give a rigorous mathematical proof of this fact, for the class of particle systems we consider. The proof makes use of ideas and results by R. Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and relies on a comparison of the particle system with a family of N independent branching random walks killed below a linear space-time barrier.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brunet-Derrida particle systems, free boundary problems and Wiener-Hopf equations

We consider a branching-selection system in R with N particles which give birth independently at rate 1 and where after each birth the leftmost particle is erased, keeping the number of particles constant. We show that, as N → ∞, the empirical measure process associated to the system converges in distribution to a deterministic measure-valued process whose densities solve a free boundary integr...

متن کامل

Survival probability of the branching random walk killed below a linear boundary

We give an alternative proof of a result by N. Gantert, Y. Hu and Z. Shi on the asymptotic behavior of the survival probability of the branching random walk killed below a linear boundary, in the special case of deterministic binary branching and bounded random walk steps. Connections with the Brunet-Derrida theory of stochastic fronts are discussed.

متن کامل

A free boundary problem in biological selection models

Brunet and Derrida [3], have proposed a class of models for biological selection processes including the one we consider here. This is a system of N brownian particles on the line which branch independently at rate 1 creating a new brownian particle on the same position of the father; simultaneously the leftmost particle (which is the less fit) disappears. Thus the total number of particles doe...

متن کامل

Last Passage Percolation and Traveling Waves

We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida [5]. The particles can be interpreted as last passage times in directed percolation on {1, . . . , N} of mean-field type. The particles remain grouped and move like a traveling wave, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front...

متن کامل

The Critical Wave Speed for the Fisher-kolmogorov-petrowskii-piscounov Equation with Cut-off

The Fisher-Kolmogorov-Petrowskii-Piscounov (FKPP) equation with cut-off was introduced in [E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E 56(3), 2597–2604 (1997)] to model N -particle systems in which concentrations less than ε = 1 N are not attainable. It was conjectured that the cut-off function, which sets the reaction terms to zero if the concentrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008